
 

 

  
Abstract—Damping of spikes in an array of coupled oscillators 

by injection of sinusoidal current is studied both experimentally and 
numerically. The effect is investigated using an array, consisting of 
thirty mean-field coupled FitzHugh−Nagumo type oscillators. The 
results are considered as a possible mechanism of the deep brain 
stimulation, used to avoid the symptoms of the Parkinson’s disease. 
 

Keywords—Alternating current, arrays of coupled oscillators, 
control of oscillations, FitzHugh−Nagumo oscillators. 

I. INTRODUCTION 
NDESIRABLE instabilities in dynamical systems can be 
avoided by applying conventional proportional feedback 

techniques [1, 2]. An example is a simple second order system, 
where the proportional feedback is given by a linear term with 
a control coefficient k: 
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Here F(⋅) and G(⋅) are either linear or nonlinear functions, the 
x* is a reference point, e.g. a steady state coordinate of the 
system. However, in many real systems, especially in biology, 
chemistry, physiology, etc., the exact locations of these states 
are unknown. Moreover, their positions may vary with time 
because of unknown and unpredictable forces. Therefore 
adaptive methods, automatically tracing and stabilizing the 
steady states are required. A large number of adaptive control 
techniques have been developed so far, e.g. the tracking filter 
method [3, 4], and applied to a variety of dynamical systems. 
To implement the tracking filter technique (1) should be 
provided with an additional equation, describing the dynamical 
variable z of the first order filter: 
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where ω f is the cut-off frequency of the filter (usually ω f <<1).  
 An alternative control method is a non-feedback technique 
based on applying to the system external periodic force: 
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In (3) the frequency of the external forcing ω should be high 
enough in comparison of the natural frequency of the 
uncontrolled dynamical system. A specific example is the 
stabilization of the unstable upside-down position of a 
mechanical pendulum by vibrating its pivot up and down at a 
relatively high frequency [5]. Recently [6] this “mechanical” 
idea has been exploited in a seemingly unexpected field, 
namely to get insight into the mechanism of the so-called deep 
brain stimulation (DBS), conventionally used to avoid tremor 
for patients with the Parkinson’s disease. 
 In this paper, we extend this research by demonstrating that 
external periodic forcing can inhibit spikes in an array of 
coupled neuronal oscillators. To be specific, we consider an 
array of the mean-field coupled electronic FitzHugh–Nagumo 
(FHN) oscillators, also known in literature as the Bonhoeffer–
van der Pol oscillators. 

II. ELECTRICAL CIRCUITS 
The corresponding circuit diagrams are presented in Fig. 1. 

In Fig. 1(a) CN is a coupling node. It is assumed, that the CN 
is not accessible directly from the outside, but via some 
passive resistance network, represented here for simplicity by 
an equivalent resistance Rg. DN is an accessible damping node. 

In Fig. 1(b) OA is a general-purpose operational amplifier, 
e.g. NE5534 type device, D1 and D2 are the BAV99 type 
Schottky diodes, L = 10 mH, C = 3.3 nF, R1 = R2 = 1 kΩ, 
R3 = 510 Ω, R4 = 30 Ω, R5 = 510 Ω, R6 = 275 Ω (an external 
resistor R6′= 220 Ω in series with the coil resistance R6″ = 
55 Ω), R7i = (24+i) kΩ, i = 1, 2,… N, R* = 510 Ω, V0 = −15 V. 
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Fig. 1 Circuit diagrams. (a) array of mean-field coupled oscillators, 
(b) single asymmetric (R4 <<R5) FHN type oscillator 
 
 

The single FHN oscillator in Fig. 1(b) is a circuit with an 
asymmetric nonlinearity (R4 <<R5). It is a slight modification 
of an oscillator, described in [7] and essentially differs from 
the earlier asymmetric version of the FHN type oscillator, 
suggested in [8]. 

In the experiments we employed a hardware array with 
N = 30, described in details (without any external control) 
elsewhere [9]. 

III. EXPERIMENTAL RESULTS 
The external inhibitory AC current Iinh (t) = IAsin(2πft) was 

injected from an external sine wave generator via the damping 
node DN. For the best performance it is necessary to choose an 
appropriate drive amplitude IA and frequency f. The f should 
be much higher than the natural frequency f0 of the spiking 
oscillators (f0 ≈ 12 kHz). The experimental results are shown 
in Fig. 2 and Fig. 3, by the waveforms and the phase portraits 
(in classical electronics called the Lissajous figures). Here the 
<VC > is the mean-field voltage of the voltages VCi from the 
individual oscillators (i = 1, 2…30). The threshold amplitude 
of the inhibitory current is I*

A = 50 mA, the optimal frequency 
is f ≈ 150 kHz, providing the lowest threshold. 

The time average of the high frequency non-spiking voltage 
<VC > (right hand side of the bottom plot), taken over the 
period (T = 1/f) of the external current, is ŪC ≈ − 0.18 V. It is 
non-zero value because of the DC bias V0 = −15 V. The ŪC is 
noticeably different from the natural steady state 
<V0C > = −0.27 V, measured in a non-oscillatory mode (when 
the all coils L are short-circuited). 

Fine diagonals in Fig. 3, [VC30, <VC >] indicate, that the 
individual oscillator #30 is strongly synchronized with the 
mean-field of the array. Other oscillators, #1 to #29 were also 
checked experimentally by means of the phase portraits 
[VCi, <VC >] and gave similar result. 

 
 

Fig. 2 Experimental waveforms of the external periodic current 
Iinh and the mean-field voltage of the array <VC >. f = 150 kHz 
 

Evidently, the self-sustained low frequency (f0 ≈ 12 kHz) 
spikes of about 4 V height are totally suppressed, when the 
inhibitory current IA ≥ IA

*=50 mA is injected. However, we 
have a finite (≈ 10%) higher frequency artefact. The voltage 
oscillates around the time average ŪC with the amplitude of 
about 0.4 V at the external drive frequency f. 

 
 

 
 

Fig. 3 Phase portraits [VC30, <VC >]. (a) Spiking oscillators (no 
control, IA = 0), (b) Non-spiking oscillators, IA = 50 mA, f = 150 kHz. 
Small cross in (b) marks the averages of the voltages [ŪC30, ŪC] taken 
over the period of the external inhibitory current Iinh(t). They are at 
about [−0.18 V, −0.18 V]. Note different position of the diagonal 
also different horizontal and vertical scales in (b), compared to (a) 
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Moreover, the artefact voltage continues to change (Fig. 4), 
when the external drive amplitude IA is increased above the 
threshold value I*

A (the amplitude IA should be somewhat 
higher than the threshold to guarantee robust inhibition). For 
example, at a double drive amplitude, IA/IA

* = 2 the average 
voltage changes its sign. Similar behavior was observed 
earlier, but not emphasized, in the numerically simulated 
bifurcation diagram for the Hodgkin−Huxley (HH) single 
neuron model [6]. 
 

 
 

Fig. 4 Time average of the mean-field voltage ŪC, taken over the 
period (T = 1/f) of the external inhibitory current Iinh, as a function of 
the normalized amplitude IA/IA

* of the external current. IA
* = 50 mA. 

Extrapolation to zero control (IA = 0) provides a value of ŪC close to 
the natural steady state <V0C > = − 0.27 V (dashed line in the plot) 

IV. MATHEMATICAL MODEL 
Applying the Kirchhoff’s laws to the circuits in Fig. 1 with 

R1 = R2 and R7 >> max ((L/C)1/2, R3, R4, R5, R6) the following 
differential equations are derived: 
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The nonlinear current-voltage (I-V) characteristic ID = ID(VCi) 
of the D1R4−D2R5 composite in (4) is approximated by three 
segments of linear functions 
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Here V* is the “breakpoint” voltage of the forward I-V 
characteristic of the diodes (V* ≈ 0.6 V). In (4) the individual 
oscillators are coupled via the mean-field voltage 
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By introducing the following set of dimensionless variables 
and parameters: 
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also two additional dimensionless parameters for the external 
sine wave forcing: 
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we arrive to a set of 2N coupled non-autonomous differential 
equations, convenient for numerical integration: 
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The f (xi) in (9) is a nonlinear function, presented by a 

piecewise linear function 
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Note, that due to d1 >> d2 the f (xi) is an essentially asymmetric 
function [7] in contrast to the common FHN cubic parabola x3, 
introduced by FitzHugh [10]. The DC bias parameters ci are 
intentionally set different for each individual oscillator, thus 
making them non-identical units. 

V. NUMERICAL RESULTS 
Integration of (9) has been performed using the Wolfram 

MATHEMATICA package. The numerical results are presented 
in Fig. 5. They are in a good agreement with the experimental 
plots in Fig. 2. The mean-field variable <xi> does not converge 
to a constant steady state, but oscillates around it at the drive 
frequency. Strictly speaking, the non-autonomous (externally 
driven) dynamical systems, e.g. given by (9), do not possess 
steady states at all. Only in the case of high frequency (f >> f0) 
drive we can introduce the average values, taken over the 
external period. These averages more or less are related to the 
steady states. 
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Fig. 5 Simulated waveforms of the inhibitory current Asin(ωt) and 
the mean-field voltage <x> from (9, 10), N = 30. A = 5.1, ω = 6.28, 
a = 3.4, b = 0.16, ci = − 44/(24 + i), i = 1, 2,…30, d1 = 60, d2 = 3.4, 
k = 3.4. The external inhibitory term Asin(ωt) is activated at t = 100 

 

VI. MEAN-FIELD APPROACH AND LINEAR ANALYSIS 
Analysis of (9) can be essentially simplified, if we consider 

the mean-field variables only, obtained by direct averaging the 
xi, yi, f(xi), and ci in the original equations: 
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As a result, the coupling term k (…) in (11) has been nullified 
independently on the value of k. Further we assume, that all 
|xi| ≤ 1. According to (10) this leads to f(xi) = 0. Eventually we 
obtain a set of linear differential equations, which does not 
describe the full dynamics of the mean field, but provides its 
steady state. In the absence of the external drive (A = 0) it has 
the following coordinates (for ab < 1 and |ci| ≤ 1/b−a): 
 

.)1(,)1( 00 abcyabcbx −=−=    (12) 
 

Stability analysis of (11) shows, that for and a > b the steady 
state, given by (12), is unstable (the real parts of the both 
eigenvalues of the corresponding second order characteristic 
equation are both positive). If (in addition to a > b) the sum 
a + b > 2, then the eigenvalues are real (no imaginary parts). 
Thus, the steady state (12) is an unstable node. Whereas the 
external periodic forcing (A ≠ 0), similarly to the mechanical 
pendulum [5], can stabilize the originally unstable steady state. 

For the set of the parameter values, employed in numerical 
simulations: a = 3.4, b = 0.16, and ci = −44/(24+i), the steady-
state coordinates, given by (12), have the following numerical 
values: 41.00 −=x , .57.20 −=y Using the definitions of 
the dimensionless variables, introduced in (7), we estimate the 
means of the steady-state coordinates of the original system: 

V25.00 −≈CV , .mA10 −≈LI The estimated steady-state 

voltage is close to its experimental value −0.27 V. 

VII. CONCLUSION 
In the recent theoretical papers on suppression of neuronal 

spikes by means of alternating current, the mathematical 
models of single neurons have been considered, the HH [6] 
and the FHN [11] models, respectively. Our earlier paper [7] 
on the adaptive feedback technique, suggested to damp spiking 
FHN type neurons also deals with a single oscillator only. In 
contrast to the above papers, in the present work we have 
investigated an array of coupled FHN type neuronal 
oscillators. Moreover, using an analogue electronic network 
we have carried out an imitative experiment. It can serve for 
better understanding the DBS technique, used to suppress the 
symptoms of the Parkinson’s disease. 

The influence of the strongly perturbed steady states of the 
neurons on the treatment by means of the DBS technique [12] 
has not been investigated yet. However, one can intuitively 
suppose, that the high frequency artefact oscillations, observed 
in the “electronic” experiment (Fig. 2) due to injection of the 
alternating current into an array of oscillators and especially its 
unnatural DC component (Fig. 4) can indicate the reason of 
undesirable side effects in the real neuronal cells. 
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Abstract— Since the beginning of the 21st century, the importance to 
manufacture products in an environmentally-conscious way has been 
highlighted. In this regard, manufacturers not only need to conserve 
energy, but they also need to scrutinize in order to save resources and 
reduce environmentally-harmful pollutants. Nevertheless, most 
machine tools highly depend on lubricating oil to achieve a 
smoother drive, large amounts of electricity during forced 
cooling to attain a high accuracy, as well as large amounts of 
cutting oil to accomplish lubrication and cooling effects. Since 
this represents a large environmental problem, a lathe 
insensitive to temperature and heat fluctuations was developed 
and evaluated. Specifically, the developed lathe was meant to be 
both a three-dimensional fixed-zero system structure and a 
forced self-cooling structure. Furthermore, an air flow speed 
control used on the forced self-cooling system was developed, 
using the neural network inverse analysis, for the reduction of 
thermal deformation on the bench lathe. Thereafter, the thermal 
deformation of the developed lathe present in several 
experiments was measured and evaluated. As a result it is 
concluded that: (1) even though there was no active forced 
cooling, the thermal deformation of the bench lathe was 
considerably small, and (2) the air flow speed control used on the 
forced self-cooling system, through the neural network inverse 
analysis, was effective in achieving a stable operation, 
disregarding weather variations.  
 
Keywords— Forced Cooling, Machine Tool, High Accuracy, Neural 
Network Inverse Analysis, Cutting.  

I. INTRODUCTION  

S the industry demands an ever-growing high-precision 
manufacturing, the importance to reduce the thermal 

deformation on machine tools has been underlined. Nowadays, 
many studies regarding the thermal deformation on machine 
tools had been made [1], [2]; among these are: forced cooling of 
the main spindle or ball screws [3], [4], [5], [6], control of the 
thermal expansion feedback, heat-insulation of the heat source 
[7], and so forth.  
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However, in the case of the forced cooling of the main 
spindle, the control to reduce the machine tool thermal 
deformation has proven to be difficult. This is because there are 
many non-linear factors in the machine tool thermal 
deformation process, such as an irregular room-temperature 
fluctuation, thermal dependence of a certain material, 
fluctuations on the preload of the spindle bearing, etc. 

Therefore, a new lathe insensitive to temperature and heat 
fluctuations was developed. In addition, an air flow speed 
control used on the forced self-cooling system was developed, 
using the neural network inverse analysis [8], for the reduction 
of thermal deformation on the bench lathe. Thereafter, a control 
method for the thermal deformation of the developed lathe was 
evaluated through several experiments. 

II. DEVELOPMENT OF A LATHE INCORPORATING HEAT 
COUNTERMEASURES [9] 

A. Three-dimensional fixed-zero system structure 
As shown in Fig. 1, the design of this new structure is meant 

to have thermal deformation but none of the effects. This is 
because the machining point of the lathe is continually changing 
in the X, Y, Z axes in respect of the origin of the thermal 
deformation. Thus, just by using this countermeasure related to 
the machine tool structure, the thermal deformation effect is 
effectively reduced to achieve a high-accuracy machining.   

B. Forced self-cooling structure 
As shown in Fig. 2, the design of this structure is meant to 

perform a forced cooling through the vaporization of cooling 
water. Specifically, considering a steady water supply and the 
capillary action of water, this is achieved by attaching a 
water-soaked cloth to the machine tool surface. Moreover, three 
fins are attached to the lathe chuck in order to blow a strong air 
flow. Consequently, the machine tool heat is removed through 
the water vaporization process and, as a result, the machine tool 
thermal deformation is reduced. Given that the headstock front 
surface is a large heat source during machining and that a strong 
air flow can be generated through the spindle rotation, it was 
considered that this area was the optimum place to attach the 
cloth. Particularly, when the spindle rotation increases, the 
internal heat generation becomes more intense. 
Correspondingly, the air flow becomes stronger and the surface 
is cooled down at a large heat transfer rate. 

Development of a temperature and heat insensitive  
lathe via neural network inverse analysis control 
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Fig. 1 Schematic view of the three-dimensional fixed-zero system structure for the thermal influence reduction  
 

(a)  X-axis fixed-zero displacement 
 

(b) Y-axis fixed-zero displacement 
 

(c) Z-axis fixed-zero displacement 
 

(d)  Adopted tool post mechanism  
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Subsequently, the air flow speed control used on the forced 
self-cooling system was developed.  In this case,  given that 

 
 
neural networks are suitable for the management of non-linear 
phenomena, the neural network inverse analysis was used to 
estimate the optimum angles of the lathe chuck fins.  

III. NEURAL NETWORK INVERSE ANALYSIS  

A. Neural network of the lathe thermal deformation  
In this section, a newly developed method to analyze the 

lathe thermal deformation using the neural network inverse 
analysis will be explained [10]. Firstly, the multiple variables in 
the neural network will be explained. In this regard, the bench 
lathe used in this experiment was the one developed in the 
previous section and the experimental setup for it is shown in 
Fig. 3. In particular, the experimental setup consisted of T-type 
thermocouples for the retrieval of data, regarding the structural 
temperature and the room-temperature, that could be processed 
as training data of the neural network. Similarly, spindle speed, 
humidity, fin angle and the thermal behavior in the X, Y and Z 
axes were measured and treated as training data; in the case of 
thermal behavior, dial gauges were used for measurement. 

Fig.2 Schematic view of the forced self-cooling structure 
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Specifications of the bench lathe used for experimentation are 
shown in Table 1. Additionally, the experimental parameters 
used for constructing the neural network are shown in Table 2. 
In this regard, in order to appreciate its effect, parameters were 
manipulated so the weather conditions on a fine day, an overcast 
day and a rainy day are recreated. Moreover, three angle 
patterns for the forced cooling control fins were used: 30, 60 
and 90 degrees.  

Furthermore, as shown in Fig. 4, spindle rotation speeds 
were set in three different patterns: Case A, Case B and Case C. 
Subsequently, the bench lathe chuck fins angle is defined as 
angle η as shown in Fig. 5. In particular, the angle of the fins is 
manipulated to control the air flow over the cloth during 
operation (see Fig. 2) and restrain the thermal deformation of 
the machine tool. After this, the heat of vaporization, the 
vaporization fluctuation and the cloth heat transfer coefficient 
were changed in order to ultimately achieve the cooling of the 
bench lathe and the reduction of the thermal deformation. To 
illustrate, the experimental results of the bench lathe thermal 
behavior are shown in Fig. 6. Prior to this, the experimental 
setup consisted of a recreated fine weather, a 60 degrees fin 
angle, a 3600 min-1 spindle speed and a no-cutting idling state; 
data retrieval was done every 15 minutes for a 7 hours period. 
Thus, 29 data units were retrieved from one experiment and 
used as training data for the neural network. It is necessary to 
mention that all the experiments were performed under the same 
procedure. For this experiment, since it has a strong non-linear 

Head 
stock 

Center height 
(from bed top) 

177 mm 

Center height 
(from floor) 

337 mm 

Spindle speed Max.3600 min-1 
Front bearing 50BNC10TYDBB 
Rear bearing 45BN10TYDB 

Bed Dimensions 600×360×160 mm 
Tool 
post 

Y-axis stroke 30 mm 

Table Z-axis stroke 200 mm 
Motor Power 0.75 kW 

Speed Inverter control 
Total weight 200 kg 

Recreated weather conditions Fine, Overcast, Rainy 
Forced self-cooling system  

fin angle (deg.) 
η= 30, 60, 90 

Spindle speed (min-1) Case A, Case B, Case C 

Table 1 Specifications of the bench lathe used for experimentation 
 

Table 2 Experimental parameters used for the neural network construction 
 

Fig. 5 Schematic view of the lathe chuck fins 
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Fig. 6 Bench lathe thermal behavior experimental results  
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mapping ability during the training of a neural network, a 
three-layer backpropagation method was used. In this regard, 
the bench lathe neural network model is shown in Fig. 7. 
Specifically, the number of input layers is 33: a bench lathe 
working time t, spindle speed N(t), 13 bench lathe structural 
temperatures θs(t), room-temperature θr(t), humidity h(t) at 
working time t, 13 bench lathe structural temperature changes 
θs(t)－θs(t－0.5), room-temperature fluctuation θr(t)－θr(t－
0.5), humidity fluctuation on a 30 minutes interval h(t)－h(t－
0.5), and fin angle η(t) at working time t. Similarly, the number 
of hidden layers is 99, and the output layers are only the total 
deformation in the X, Y and Z axes. 

In Fig. 7, Wij are the linking weights between the input and 
the hidden layers, Vjk are the linking weights between the hidden  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and the output layers, while the offset values of the hidden and 
output layers are βj and γk, respectively. In addition, a sigmoid 
function was used as the transform function in the hidden layer.  

Given that 29 training data units and 27 training patters were 
used, the amount of data sets was 783. In other words, 29 
training units of measured data were used in each training 
pattern. In Fig. 8, the relationship between the number of 
training iterations and the error function can be appreciated. In 
this regard, the error function Ep is calculated using equation 
(1). 
 

Ep ＝ -----   Σ  (  Tkp － Dkp  ) 2                        (1) 
 
Where Tkp and Dkp are the training data and the output data of the 
unit k in the training pattern p; when the training iterations 
reached a 394 value and the error function converged to 
9.97×10-11, training iterations concluded. After the calculation, 
the neural network linking weights Wij, Vjk and offset values βj, 
γk were taken out for the inverse analysis.   

B. Lathe control method through the neural network inverse 
analysis 
Thereafter, the optimum fin angle ηo(t) for the bench lathe chuck 
fins was calculated through the inverse analysis of this neural 
network. For this, the linking weights Wij, Vjk and offset values βj, 
γk in the neural network were used and an algebraic expression 
for the inverse analysis, and consequently for control of the 
optimum fin angle ηo(t), was constructed. Furthermore, the 
relationship between the thermal deformation Dkp(t) and the fin 
angle η(t) followed equation (2). 
 
Dkp(t) = f { Wji, Vkj, ζjj, γk, θs(t), θs(t－Δt), θr(t), θr(t－Δt), t, h(t), 

h(t－Δt), N(t), η, } 
 
 
        =  Σ                                                                  +                             (2) 
 
 
 
Where  
 
  
 
 
 
 
 
 
 
Here, at working time t, the fin angle η(t) and the thermal 
deformation Dkp(t) are two unknown variables, while the other 
variables involved are considered as known. Through equation 
(2), and a feedforward control, it was possible to calculate the 
the optimum fin angle ηo(t) to minimize the thermal deformation 
Dkp(t). 
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Fig.7  Neural network model between the measured 
temperatures, the forced self-cooling structure and 
the thermal deformation on the three-dimensional 
fixed-zero system structure. 
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Fig. 8 Error convergence on the training process 
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Fig.9 Bench lathe thermal deformation behavior under fine weather conditions 
 (filled markers: without the proposed system; empty markers: with the proposed system) 
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(b) Temperature change 
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Fig.10 Bench lathe thermal deformation behavior under overcast weather conditions  
(filled markers: without the proposed system; empty markers: with the proposed system) 

(a) Humidity change 
 

(b) Temperature change (c) Fin angle 

(d) Relative displacement (e) Angular displacement 
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IV. EVALUATION OF THE PROPOSED METHOD RESULTS  
Finally, to evaluate the performance of the three 

countermeasures mentioned as a single method, 
experimentation on the bench lathe was done under three 
recreated weather conditions: fine, overcast and rainy. During 
experimentation, the spindle speeds varied according to case A 
on a no-cutting idling state and data was measured every 15 
minutes; then, the optimum fin angle ηo(t) at working time t was 
calculated on a personal computer, through the retrieved data 
and equation (2), to minimize thermal deformation Dkp(t). 
Simultaneously, the optimum fin angle ηo(t) was controlled 
through a feedforward control. 

Moreover, other experiments that involved a 60 degrees 
fixed fin angle were also performed for comparison. In this 
regard, since there was just one bench lathe available, 
experimentation was performed at different times but with 
similar weather, humidity and room-temperature conditions. 

Accordingly, experimental results under the fine, overcast 
and rainy weathers conditions are shown in Fig. 9, Fig. 10 and 
Fig. 11. Namely, the considered parameters were: (a) Humidity, 
(b) Temperature change, (c) Fin angle, (d) Relative 
displacement and (d) Angular displacement. In the three 
weather conditions, the bench lathe thermal deformations that 
resulted from the proposed method were smaller than in the case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of the fixed fin angle experiments. Particularly, the relative 
displacements in all weather conditions were remarkably small: 
ΔX was 1.0 μm, ΔY was 1.0 μm and ΔZ was 1.1 μm. Since 
factories in general are subjected to diverse weather conditions, 
room-temperature or heat transfer rate change in an irregular 
and complex way. However, even under such circumstances, it 
is possible to calculate the optimum fin angle with this method. 
Therefore, the proposed method countermeasures are 
considered very effective. In addition, this method makes the 
improved technology an environmentally-friendly and 
affordable one by reducing parameters that involve higher costs. 

V. CONCLUSIONS 
From the experimental results it was concluded that: 

1) Even though there was no active forced cooling, the thermal 
deformation of the bench lathe was considerably small 
2) The air flow speed control used on the forced self-cooling 
system, through the neural network inverse analysis, was 
effective in achieving a stable operation, disregarding weather 
variations.  
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